



















IBM announced IBM Machine Learning, the first cognitive platform for continuously creating, training and deploying a high volume of analytic models in the private cloud at the source of vast corporate data stores. Even using the most advanced techniques, data scientists – in shortest supply among today’s IT skills1 – might spend days or weeks developing, testing and retooling even a single analytic model one-step at a time.
IBM has extracted the core machine learning technology from IBM Watson and will initially make it available where much of the world’s enterprise data resides: the z System mainframe, the operational core of global organizations where billions of daily transactions are processed by banks, retailers, insurers, transportation firms, and governments.
IBM Machine Learning allows data scientists to automate the creation, training, and deployment of operational analytic models that will support:
Cognitive Automation for Data Scientists from IBM Research to assist data scientists in choosing the right algorithm for the data by scoring their data against the available algorithms and providing the best match for their needs. The service also considers various circumstances – such as what the algorithm is needed to do and how fast it needs to produce results.
Clients are beginning to see the value in IBM Machine Learning for z/OS. Argus Health, a DST company, is evaluating this technology to help payers and providers better manage the increasing complexities and optimize outcomes. Argus is testing scenarios applying IBM Machine Learning for z/OS, while exploring creation, training, and deployment of applications that can help them better manage pharmacy costs. By using this technology, Argus hopes to continue creating unique solutions that leverage insights from advanced analytics with members across various scenarios, including the point of care in both, the doctor’s office and the pharmacy.
IBM Machine Learning will create a unique opportunity across industries designed to help businesses address the fluid nature of these problems:
The IBM z Systems mainframe is capable of processing up to 2.5 billion transactions – the equivalent of roughly 100 Cyber Mondays – in a single day. IBM Machine Learning for z/OS helps extract greater value from z Systems data without moving the data off the system for analysis – helping to minimize latency, costly processing, and security risks associated with traditional ETL processes. It continuously analyzes the data and models to provide better predictions and optimization of behavioral models, speeding time to insights.
IBM Machine Learning will first be available on z/OS and will be available for other platforms in the future, including IBM POWER Systems. By deploying IBM Machine Learning on its POWER Systems, clients can leverage machine learning with greater efficiency, higher performance, and cost effectiveness along with full data governance.
Keywords: Learning Analytic Models, Private Cloud, Cognitive Automation, the Internet of Things (IoT), ARC Advisory Group.